Zeiss Confocal Microscope - LSM880

Reporter: Li Xiaoting (李筱婷) Application Specialist Date: 8/30/2019

Agenda

Training Contents

• Talk:

Principle and Application cases of LSM880 Confocal Microscopy

• Hands on:

Introduction of Hardware components and laser safety Startup and shutdown the system Acquisition of 2D images Transmission light images acquisition Save and export 2D images Z-stack images acquisition Time series images acquisition Tile images acquisition Airyscan imaging and processing Fast Airyscan imaging and processing Image analysis

• Q & A:

Hands on by customers with their own samples Answer the customers' questions

Agenda

	August 28 th	August 29 th	August 30 th
	(Wednesday)	(Thursday)	(Friday)
AM	9:30 ——11:00 Talk: Principle of Confocol Microscopy	9:00 —— 12:00 Hands on 6-8	9:00 —— 12:00 Hands on 11
PM	13:30 —— 17:00	13:30 —— 17:00	13:30 —— 16:00
	Hands on 1-5	Hands on 9-10	Hands on, Q & A

	August 28 th	August 29 th	August 30 th
	(Wednesday)	(Thursday)	(Friday)
AM	9:30 ——11:00	9:00 —— 12:00	9:00 —— 12:00
	Talk: Principle of Confocol	Hands on 9-11	Hands on 9-11
	Microscopy	Group 1	Group 2
PM	13:30 —— 17:00 Hands on 1-8 Group 1	13:30 —— 17:00 Hands on 1-8 Group 2	13:30 —— 16:00 Q & A

Agenda

1	Applications of Confocal Microscope
2	Principle of Confocal Microscope
3	Light path components of LSM880
4	How to acquire a high quality image?

LSM880 Confocal Microscopy High Quality, Multi-dimensions, Large Field of View

Confocal: widely used in almost all field of Biological and Medical Research

Nearly all fields of Science...

Agriculturual Research, Alzheimer, Cancer, Cell Science, Biochemistry, Botany, Immunology, Developmental Biology, Ecology, Epidemiological Deseases, Evolutionary Biology, Food design, Genetics, HIV, Material Quality Control, Material Sciences, Medicine, Membrane Research. Neurobiology, Parasitology, Pharmacology, Physics, Plant Biology, Proteomics, Signal Transduction, Virology...

Basic Function: 2D Fluorescent Images High quality images of Single or Multiple channels

Kidney cell of Rat

Green: GFP fusion protein, Golgi body Red: antibody, microtubule Blue: DAPI, cell nucleus

Basic Function: Z-stack Drosophila Brain– different neuron cluster

Z-stack 3D reconstruction

Drosophila Nerve System

Glomeruli of Rat Kidney

Z-stack Maximum intensity projection (MIP)

- Objective: Plan-Apo 63x/1.4 Oil
- MIP

Ortho Function: X-Z, Y-Z cross section

Basic Function: Time series

Time series imaging

Mitosis in HeLa-Kyoto cell line during mitosis Video showing Histone 2B (H2B, red, mCherry) and microtubule end-binding protein 3 (EB3, blue, EGFP) Sample courtesy of: Jan Ellenberg, EMBL, Heidelberg.

4D dynamic structure

Magration of the cancer cell

样品: MDA231细胞 胶质 GFP 基质金属蛋白酶 Alexa 647

来源: Institute of Cancer, Fudan University Shanghai, China

0d00:00:00.000

Time

4D dynamic structure

Development of drosophila embryo

Drosophila melanogaster embryo, Jupiter-GFP (microtubules)

Z-stack depth coded: 72 slices, Every 15 min, 11.5 h Sample courtesy of Balazs Erdi, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter

Basic Function: Tile scan expend field of view

Basic Function: Tile scan expend field of view

Brain section of Rat (Z-stack, Tiled, MIP)

Measurement and analysis: Intensity

	Ch1	Ch2	Ch2
Mean Intensity	43.45529	37.38946	37.38946
Standard Deviation	84.16126	44.23883	14.23883
Pixels	522900	522900	522900
Area [µm x µm]	299038.87	299038.87	9038.87

Profile Analyze intensity distribution of a line

Used to analyze the distribution of specific markers, when using medicine to stimulate bioplast or suspension cells

co-localization quantity colocalization analysis of two fluorescents signal

(f)

(d)

Various Degrees of Co-Localization in Confocal Microscopy

Directly show the co-localization coefficent

$$R_{r} = \frac{\sum_{i} (S1_{i} - S1_{aver}) \cdot (S2_{i} - S2_{aver})}{\sqrt{\sum_{i} (S1_{i} - S1_{aver})^{2} \cdot \sum_{i} (S2_{i} - S2_{aver})^{2}}}$$

(e)

Figure 3

Expanding Function: Live cell Incubator

Culture and imaging of live cells

Experiment designer 6D long term live cell imaging

稳定快速的焦距控制 - Definite Focus.2 长时间活细胞成像

- □ 高达200HZ的高速稳定模式确保实时成像的稳定性
- □ 使用了数字控制的压电陶瓷Z轴来实现高分辨成像的稳定性(适用于Zen Black 2.1及以上版本)
- 具备多位点完美聚焦补偿,可确保每一个位置的细胞都完美的聚焦
- □ 重新设计的DF.2软件控制功能(Zen Blue/Black)
- □物镜和显微镜兼容性更好

Expanding Function: Linear unmixing

最大程度避免荧光串色的影响

光谱拆分 去除自发荧光

果蝇眼

Green: AF488, actin Red: Cy3, Crumbs Blue: autofluorescence Spectral Imaging and Linear Unmixing to Remove Autofluorescence

Picture from Zeiss Campus http://zeiss-campus.magnet.fsu.edu /articles/ spectralimaging/considerations.html

Expending Function: FRET Fluorescence Resonance Energy Transfer 荧光共振能量转移

Excitation

Emission

Excitation

Emission

FRET是指当两个荧光基团满 足一定条件时发生的一种非辐射 性的、偶极-偶极配对过程,借 此过程,能量从激发态荧光供体 以非常接近的波长转移到荧光受 体。

FRET发生的条件:

- 供体与受体的距离在2-10nm
- 供体的发射波长与受体的激发 波长一致
- 供体与受体的极性一致
- 供体与受体有足够的荧光寿命

>10nm

</=10nm

FRET

Donor

Donor

Expanding Function: FRAP

Fluorescence Recovery After Photobleaching 荧光漂白后恢复实验

ZEINN

对分子的移动性进行量化

Expanding Function: Super Resolution Microscopy Airyscan

Expanding Function: Super Resolution Microscopy Airyscan

Expanding Function: Super Resolution Microscopy Airyscan improves resolution in lateral and axial direction

Z-stack: 3.98 µm; 步进: 200 nm (Plan-Apochromat 63x/1.4 Oil) 有丝分裂中的培养细胞微管蛋白

Airyscan: 高分辨率, 高信噪比成像

Telomere replication without RTEL1: Stalled forks and telomere breakage visualized as doubled dots using Airyscan. Resolution is meaningless without good SNR.

Courtesy: J. Karlseder Ph.D. (Molecular and Cell Biology Laboratory) and J. Fitzpatrick Ph.D. (Director, Waitt Advanced Biophotonics Core), The Salk Institute, La Jolla, USA.

Carl Zeiss Microscopy

扩展功能:快速 超高分辨率成像 Fast Airyscan

Standard Confocal – 30 FPS

Airyscan – **30 FPS**

Cardiomyocyte Cells with SiR Tubulin to measure microtubule buckling, Robison et Al, "Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes", Science April 2016
Fast Airyscan 应用 Calcium Signaling in Zebrafish-GCaMP6

Standard ROI

20x 1.0 W Plan Apo ; Sample Courtesy of Claire Oldfield Univ of California Berkeley

Fast Mode ROI

Hardware:

Axio Observer 7—— Inverted Microscopy with scanning stage

- 4 Lasers-405, Argon (458/488/514), 561, 633
- 3 Detectors-2 PMT + 1 GaAsP
- Objectives 10x/0.45, 20x/0.8, 40x/1.4 oil, 63x/1.4 oil, 100x/1.4 oil

Super resolution modual—— Airyscan, Fast Airyscan

Software:

Tile and Position Experiment Designer

FRET

FRAP

Applications of Confocal Microscope Principle of Confocal Microscope Light path components of LSM880 How to acquire a high quality image?

Widefield Microscope

Rat Brain, Double labelling: Green: Neurons, Blue: Nuclei

Confocal Only detect in-focos information

Carl Zeiss Microscopy

Property of Light Microscope

Widefield Microscopy

Carl Zeiss Microscopy

2019/0/30

Confocal Microscopy

Confocal Microscopy

Rat Brain, Double labelling: Green: Neurons, Blue: Nuclei

Scanning Strategy in X-Y plane Ponit – Line - Frame

Scanning Strategy in Z-Stack Frame by Frame

How is a X/Y/Z Stack produced?

Applications of Confocal Microscope Principle of Confocal Microscope Light path components of LSM880 How to acquire a high quality image?

LSM880 Light Path

To acquire a high quality image, we should focus on ... Laser Pinhole PMT

The main tools are:

- Laser power
- Pinhole
- PMT (Gain)

- 🛆 Char	nels			~	Show all	
Tracks	5	Channels				
	exa 594	A594			-	
	. + Ū		Select	All Un	iselect A	All
Track Configuration Alexa 594 🖆 🛱 👼						
Alexa 594 - I SM						
Lasers 405 488 555 639						
Pinhole	_0_			2	9.8	
0.88 Airy Units = 0.9 μm section 1 AU ma				ах		
A594	Gain (Maste	er) ———	-0	6	03	•
	Digital Offse	et		-)- 0		÷
	Digital Gain	-0		_ 1	.0	
Display	1					

Laser Color: the laser color should match the fluorophore

405 nm DAPI / Hoechst

561nm RFP / Alexa Flour 568 / Cy3

488nm GFP / Alexa Flour 488 / FITC

633nm Alexa Flour 647 / Cy5

Laser Power: High laser power bleached the sample signal

Sample:

Cultured mammalian cell expressing GFP (live cell)

Imaging Strategy:

Time series of 1000 images acquired at low laser power but relatively high gain setting.

(excitation at 488 nm with just 0.5% of the max. power).

Result:

Hardly any photobleaching !

Time series: 1000 Images (!)

- Block out of focus signals
 - The larger the pinhole, the more light pass through, the more out of focus signal
- The thickness of optic section
 - The larger the pinhole, the thicker the optic section, the better Z axis resolution

Generally, the pinhole is 1AU

Detector

PMT Detectors / Photomultiplier Tube (光电倍增管)

Assuming a bright sample

63

PMT Detectors / Photomultiplier Tube

ZEISS

Assuming a dark sample

PMT Detectors / Photomultiplier Tube

Increase a dark sample's signal with more Gain

65

Assume a really dimm sample -

Extreme Gain values result in Noise

GaAsP Detector

GaAsP (*Gallium Arsenide Phosphide*) is a semiconductor material with ideal characteristics for converting photons into electrical signals.

Benefits of GaAsP detectors:

Two times better Quantum efficency than PMTs (resulting in higher sensitivity, better image quality, and higher acquisition speed).

GaAsP detectors can be operated in integration mode as well as in photon counting mode.

Gallium-Other Metals Arsen - Metalloids Phosphor-non Metal

Typical sensitivity of detectors

GaAsP detector (schematic illustration)

ZEISS

Get More Results With GaAsP Detectors

Applications Benefit from Improved Sensitivity in Many Ways

Better image quality

 Higher sensitivity equals better signal-to-noise ratio (detection of faint signals)

Faster scanning

- Data recording at shorter pixel times
- Need for averaging strategies largely reduced

Longer imaging

 Data recording at lower laser power (reduced bleaching and photo-toxic effects in live cell imaging)

Cultured 2h8 cells labeled with extremely low expressing GFP and mCherry. Courtesy A. Bruckbauer Cancer Research, London, UK

LSM 880 – Airyscan Detection Zoom optics and a unique 32 GaAsP-PMT design

Airyscan enhances resolution up to 2 fold The comparison is made with confocal using PH =

1 A.u.

Improvement 2x: Measured using 40 nm beads (excitation at 488 nm) Same acquisition time, same laser power.

LSM 880 – Airyscan: Resolution, SNR, and Flexibility

ZEISS

Choose zoom-in ROI's, orientations, laser

Use Airyscan just as an additional detector. Scan speeds, ROIs, field orientations, laser wavelengths, multitracking, z-stacks, time series etc. are setup as always. Sample handling and fluorophore selection don't need rethinking

1	Applications of Confocal Microscope
2	Principle of Confocal Microscope
3	Light path components of LSM880
4	How to acquire a high quality image?

When we are talking about the quality of a image, we are actually talking about...

Intensity SNR Resolution

How to set up the optimal values

A good illuminated image

Illumination: Not too bright, Not too dimm

Range Indicator

How to evaluate the dynamic range the best

Profile

How to measure the dynamic range

= gives

measurements of grey values along a line

Carl Zeiss Microscopy

Profile

How to measure the dynamic range

Gain (Master)

Not enough

Gain (Master)

Set too high

Scanning Strategies

Image Noise: What does it look like?

"Good" Image

"Bad" Image
Scanning Strategies

Speed and Averaging

To decrease the effect of noise, more photons (signal) must be collected:

1) Slower Scan Speed

2) Averaging

Scan the image x-times and take the average signal for each pixel -> addition of photons from several scanning runs

Which of the two setups will lead to better image quality?

Hunting for Details?

Choose the right Resolution

Resolution okay

Resolution too low

Hunting for Details?

Choose the right Resolution

Resolution okay

Resolution too low

Resolution

Information given in the Software

🗢 💳 Acquisition Mode 🔹 🖓 🖬	
Objective Plan-Neofluar 40x/1.3 Oil DIC	Plan-Neofluar 40:(1.3 Oil DIC
Scan Mode Frame	
Frame Size X 1712 X X Y Y 1712	Image Size: 196.7 µm x 196.7 µm
Speed 4 2 Max	Pixel Size: 0.11 µm
Pixel Dwell 7.66 µsec Scan Time 37.87 sec	
Averaging	
Number 1 THE Bit Depth 8 Bit	
🗢 Scan Area	EC Plan-NEOFLOAR
Image Size: 196.7 μm x 196.7 μm	40x/1,3 Oil DIC
Pixel Size: 0.11 µm	

Confocal Imaging

From Image to 3D Information

How is a X/Y/Z Stack produced?

Optical Slice Thickness

Overlap between Optical Slices

With this setting, the object structures between the slices cannot be detected.

At very small intervals a lot of additional data without additional information is generated.

Optical Slice Thickness

Overlap between Optical Slices

The optimal overlap is fulfilled at "Nyquist" or "Sampling Theorem" conditions.

→ Sampling frequency (slice interval) must be the double of the information frequency (z-resolution or optical slice thickness).

To achieve these conditions just press *Optimal Interval* in *Z-Stack* dialog. Then, the slices overlap by half of their thickness (no missing information @ minimal number of sections).

Consumptive materials of Confocal

Cover Glass:170um Glass bottom dish

Cover Glass:170um
Cell Chamber Slides

We make it visible.